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Abstract

The applied heat flux on the drilling surface of drilling tool is estimated in the present three-dimensional inverse heat conduction prob-
lem. The inverse algorithm utilizing the Steepest Descent Method (SDM) and a general purpose commercial code CFX4.4 is applied
successfully in this study based on the simulated and measured temperature distributions with time at four sensors embedded on the
drilling surfaces. The numerical experiments are considered at the first stage to illustrate the validity of inverse determination of the
unknown heat flux using exact and error measurements. Experimental data are then used to estimate the actual heat flux along the dril-
ling edge at two different drill peripheral cutting speeds. Results of both the numerical and experimental examinations show that the
reliable estimated heat flux can be obtained by using the present inverse algorithm.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Titanium alloys are excellent candidates for high perfor-
mance applications owing to their high strength to weight
ratio and excellent corrosion resistance, maintained even
at high temperature. However, the machinability of tita-
nium and its alloys is generally poor owing to several inher-
ent properties of the materials. During machining, titanium
alloys have a tendency to weld to the cutting tool, thus
leading to chipping and premature tool failure. Its low
thermal conductivity increases the temperature at the tool/
workpiece interface, which affects the tool life adversely.
Additionally, its high strength maintained at elevated tem-
perature and its low modulus of elasticity further impairs
its machinability.

Ti drilling has been widely utilized in industry, the
research publications in this subject can be found, but
not many, in the literature. For instance, a series of exper-
iments in drilling of Ti–6Al–4V have been conducted by
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Sakurai et al. [1–3]. Arai and Ogawa [4] studied the high
pressure (7 MPa) cutting fluid assisted drilling. Cantero
et al. [5] focused on the dry drilling tool wear and work-
piece subsurface damage.

Drilling temperature and heat flux at the tool–chip inter-
face have long been recognized as major factors that influ-
ence the tool performance. During drill machining, high
heat fluxes, consequently high temperatures, are imposed
on the region of the drilling edges. The rate of wear of
the drilling tool and the friction between the workpiece
and tool depend strongly on these heat fluxes. However,
direct measurement of temperature at the tool–chip inter-
face using traditional type sensors is impossible due to
the cutting movement and the presence of the chip. Due
to the fact that the direct sensing of the tool–chip interface
temperature is difficult, the use of the techniques of inverse
heat conduction problems is a good alternative since this
technique takes into account temperatures measured from
accessible positions.

The 3-D inverse problems for an irregular domain are
still limited in the literature. The technique of the 3-D
inverse problems of irregular domain in utilizing an

mailto:chhuang@mail.ncku.edu.tw


Nomenclature

Cp heat capacity
h heat transfer coefficient
J ½qðtÞ� functional defined by Eq. (2)
J 0ðSd ; tÞ gradient of functional defined by Eq. (14)
k thermal conductivity
PðtÞ surface averaged direction of descent defined by

Eq. (4a)
PðSd ; tÞ direction of descent defined by Eq. (4b)
qðSd ; tÞ applied heat flux on drilling surface
T ðX; tÞ estimated temperature
DT ðX; tÞ sensitivity function defined by Eq. (5)
Y mðtÞ measured temperature

Greek symbols

b search step size
kðX; tÞ Lagrange multiplier defined by Eq. (11)

� stopping criterion
q density

Superscripts

n iteration index

ˆ estimated value

Subscripts

d drilling surface index
m sensor index
w cooling water
1 ambient condition
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iterative inverse algorithm together with the commercial
code CFX4.4 [6] has been developed by Huang and Wang
[7] who applied the inverse algorithm to estimate the
unknown surface heat fluxes in a 3-D solid. By following
the similar technique, Huang and Chen [8] estimated the
unknown boundary heat flux in a 3-D inverse heat convec-
tion problem and Huang and Cheng [9] predicted the heat
generation rate of chips on a PC board. Huang et al. [10]
developed the technique of Steepest Descent Method
(SDM) and commercial code CFX4.4 to estimate the local
convective heat transfer coefficients over fin surface in a
steady-state 3-D inverse heat conduction problem based
on the simulated temperature measurements by infrared
thermography. More recently, Huang and Lo [11] applied
the similar technique to estimate the applied heat flux on
the cutting edges for the cutting tools.

However the 3-D inverse heat conduction problem in
estimating the heat flux along the drilling edges for the dril-
ling tool has not been examined. The objective of this study
is to extend the techniques used in [7–11] to a transient 3-D
inverse drilling problem in estimating the time-dependent
heat flux along the drilling edges based on the measured
tool temperatures.

The Steepest Descent Method derives basis from the
perturbational principle [12] and transforms the inverse
problem to the solution of three problems, namely, the
direct problem, the sensitivity problem and the adjoint
problem, which will be discussed in detail in the next few
sections.
Fig. 1. (a) The drilling tool, (b) the grid system of drilling tool and (c) the
heat applying surface.
2. The direct problem

A practical drilling tool is illustrated in Fig. 1a. The dril-
ling tool is designed to have the coolant holes inside the
drill body, Xðx; y; zÞ. All the surfaces, except for the top sur-
face and drilling edges, are subjected to a convective
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boundary condition. For the cooling passage surfaces, the
prescribed heat transfer coefficient and water temperature
are taken as hw and T w, respectively. For the surfaces else-
where, the heat transfer coefficient and ambient tempera-
ture are taken as h1 and T1, respectively. The boundary
condition for the top surface is assumed adiabatic and
the unknown heat flux is imposed on the drilling surfaces.

The unknown strength of heat flux on the drilling sur-
faces is assumed only as a function of time. For this reason,
an unknown time-dependent heat flux qðtÞ is imposed on
the drilling edges. Fig. 1b shows the simplified grid system
(the actual grid system is too dense to be shown) of a dril-
ling tool. Fig. 1c illustrates the heat applying surface along
the drilling edges.

The formulation of this 3-D transient drilling problem
can be expressed as

k
o2T ðX; tÞ

ox2
þo2T ðX; tÞ

oy2
þo2T ðX; tÞ

oz2

� �
¼qCp

oT ðX; tÞ
ot

in ðX; tÞ

ð1aÞ

�k
oT ðSd ; tÞ

on
¼ qðtÞ on the drilling surface Sd ð1bÞ

�k
oT ðSt; tÞ

on
¼ 0 on the top surface St ð1cÞ

�k
oT ðSc; tÞ

on
¼�hwðSc; tÞðT �T wÞ on the cooling passage surface Sc

ð1dÞ

�k
oT ðS; tÞ

on
¼�h1ðS; tÞðT �T1Þ on the surfaces S elsewhere ð1eÞ

T ðX; tÞ¼ T1 for t¼ 0 ð1fÞ
Here X indicates the domain for the drill, k is the ther-

mal conductivity of the material, and q and Cp are the den-
sity and heat capacity of the material, respectively.

The direct problem considered here is concerned with
calculating the drilling tool temperatures when the applied
heat flux, heat transfer coefficient, thermal properties as
well as the initial and boundary conditions of the drill
are all known. The solution for the above 3-D heat conduc-
tion problem in the domain Xðx; y; zÞ with time t is solved
using CFX4.4 and its Fortran subroutine USRBCS.

3. The inverse problem

For the inverse problem considered here, the time-
dependent heat flux q(t) is regarded as being unknown,
but everything else in Eq. (1) is known. In addition, the
temperature readings using traditional contact type sensors
at some proper locations are available.

Let the temperature readings taken by the sensors at the
measurement locations be denoted by Y ðxm; ym; zm; tÞ �
Y mðtÞ, here m ¼ 1 to M and M represents the number of
sensors, and ðxm; ym; zmÞ indicates the measurement posi-
tions. This inverse problem can be stated as follows: by uti-
lizing the above mentioned measured temperature data
Y mðtÞ, estimate the unknown time-dependent heat flux qðtÞ.

The solution of this inverse problem is to be obtained in
such a way that the following functional is minimized:
J ½qðtÞ� ¼
Z tf

t¼0

XM

m¼1

½T mðtÞ � Y mðtÞ�2 dt ð2Þ

here, T mðtÞ are the estimated or computed temperatures at
the temperature measurement locations ðxm; ym; zmÞ and
time t. These quantities are determined from the solution
of the direct problem given previously by using the esti-
mated heat flux q(t).

4. Steepest descent method for minimization

An iterative process based on the following steepest des-
cent method [12] is applied for the estimation of unknown
heat flux q(t) by minimizing the functional J[q(t)]

qnþ1ðtÞ ¼ qnðtÞ � bnP nðtÞ for n ¼ 0; 1; 2 ð3Þ
Here bn is the search step size from iteration n to itera-

tion nþ 1, and P nðtÞ is the surface averaged direction of
descent (i.e. search direction) given by

P nðtÞ ¼
R

S

R tf
t¼0

P nðSd ; tÞdt dSR
S Sd dS

ð4aÞ

where

P nðSd ; tÞ ¼ J 0nðSd ; tÞ ð4bÞ
Eq. (4b) is also the gradient direction at iteration n for

steepest descent method.
To complete the iterations in accordance with Eq. (3),

the step size and the gradient of the functional J 0nðSd ; tÞ
need be computed. In order to develop expressions in
determining these two quantities, a ‘‘sensitivity problem”
and an ‘‘adjoint problem” need be constructed as described
below.

4.1. Sensitivity problem and search step size

It is assumed that when q(t) undergoes a variation Dq, T

is perturbed by T þ DT . Then replacing in the direct prob-
lem q by qþ Dq and T by T þ DT , subtracting the resulting
expressions from the direct problem and neglecting the sec-
ond-order terms, the following sensitivity problem for the
sensitivity function DT are obtained.
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� k
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� k
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DT ðX; tÞ¼ 0 for t¼ 0 ð5fÞ
CFX 4.4 is used to solve the above sensitivity problem.
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The functional J ½qnþ1ðtÞ� for iteration n + 1 is obtained
by rewriting Eq. (2) as

J ½qðtÞ� ¼
Z tf

t¼0

XM

m¼1

½T mðt; qn � bnP nÞ � Y mðtÞ�2 dt ð6Þ

where qnþ1 is replaced by the expression given by Eq. (3). If
temperature T mðt; qn � bnP nÞ is linearized by a Taylor’s
expansion, Eq. (6) takes the form

J ½qnþ1ðtÞ� ¼
Z tf

t¼0

XM

m¼1

½T mðt; qnÞ � bnDT mðt; P nÞ � Y mðtÞ�2 dt

ð7Þ

where T mðt; qnÞ is the solution of the direct problem at
ðxm; ym; zmÞ and t by using the estimate heat flux for the ex-
act heat flux. The sensitivity functions DT mðt; P nÞ are taken
as the solutions of problem (5) at the measured positions
ðxm; ym; zmÞ and time t by using Dq ¼ P n. The search step
size bn is determined by minimizing the functional given
by Eq. (7) with respect to bn. The following expression is
the result of bn:

bn ¼

R tf

t¼0

PM
m¼1

½T mðtÞ � Y mðtÞ�DT mðtÞdt

R tf
t¼0

PM
m¼1

½DT mðtÞ�2 dt
ð8Þ
4.2. Adjoint problem and gradient equation

To obtain the adjoint problem, Eq. (1a) is multiplied by
the Lagrange multiplier (or adjoint function) kðX; tÞ and
the resulting expression is integrated over the correspon-
dent space and time domains. Then the result is added to
the right hand side of Eq. (2) to yield the following expres-
sion for the functional J ½qðtÞ�:

J ½qðtÞ� ¼
Z tf
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� dðy� ymÞdðz� zmÞdS dt
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t¼0

Z
X
½kðX; tÞ � ðr2T � qCp

k
oT
ot
Þ�dXdt in ðX; tÞ

ð9Þ

where dð�Þ is the Dirac delta function and ðxm; ym; zmÞ refers
to the measured positions.

The variation DJ can be obtained by perturbing q by
qþ Dq and T by T þ DT in Eq. (9), subtracting the result-
ing expression from the original Eq. (9) and neglecting the
second-order terms. We thus find
DJ ½qðtÞ� ¼
Z tf

t¼0

Z
S

2½T ðS; tÞ � Y ðS; tÞ�

� DTdðx� xmÞdðy � ymÞdðz� zmÞdS dt

þ
Z tf

t¼0

Z
X
½kðX; tÞ � ðr2DT � qCp

k
oDT
ot
Þ�dXdt

ð10Þ

In Eq. (10), the second double integral term is reformu-
lated based on the Green’s second identity; the boundary
conditions of the sensitivity problem given by Eqs. (5b)–
(5e) are utilized and then DJ is allowed to go to zero.
The vanishing of the integrands containing DT leads to
the following adjoint problem for the determination of
kðX; tÞ:
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Finally, the following integral term is left

DJ ¼
Z tf

t¼0

Z
S
� kðSd ; tÞ

k
DqðtÞdS dt ð12Þ

From the definition given in [12], the functional incre-
ment can be presented as

DJ ¼
Z tf

t¼0

Z
S

J 0ðSd ; tÞDqðtÞdS dt ð13Þ

A comparison of Eqs. (12) and (13) leads to the follow-
ing expression for the gradient of the functional J[q(t)]:

J 0ðSd ; tÞ ¼ �
kðSd ; tÞ

k
on the drilling surfaces Sd ð14Þ
4.3. Stopping criterion

If the problem contains no measurement errors, the tra-
ditional check condition is specified as

J ½qnþ1ðtÞ� < e ð15Þ

where e is a small-specified number. However, the observed
temperature data may contain measurement errors. There-
fore, the functional Eq. (2) is not expected to be equal to



Fig. 2. Experimental setup with workpiece in the spindle and drill in a
vertical tool holder.
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zero at the final iteration step. As per the experiences of the
authors [7–12], the discrepancy principle as the stopping
Fig. 3. The thermocouple locations in the drill flank face.
criterion is used in this study, i.e. it is assumed that the tem-
perature residuals may be approximated by

T mðtÞ � Y mðtÞ � r; m ¼ 1 to M ð16Þ

where r is the standard deviation of the measurements,
which is assumed to be a constant. Substituting Eq. (16)
into Eq. (2), the following expression is obtained for the
stopping criterion e:

e ¼ Mr2tf ð17Þ

The stopping criterion is given by Eq. (15) with e deter-
mined from Eq. (17).
b

Fig. 4. (a) The exact and estimated heat fluxes and (b) the estimated
temperature distributions of the drill at t = 14 s, using four sensors and
r ¼ 0 in the numerical test case.
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5. Computational procedure

The computational procedure for the solution of this
inverse problem using steepest descent method may be
summarized as follows:

Suppose qnðtÞ is available at iteration n.

Step 1. Solve the direct problem given by Eq. (1) for
T ðX; tÞ:

Step 2. Examine the stopping criterion given by Eq. (15)
with e given by Eq. (17). Continue if not satisfied.

Step 3. Solve the adjoint problem given by Eq. (11) for
kðX; tÞ.

Step 4. Compute the gradient of the functional J 0 from
Eq. (14).

Step 5. Compute the direction of descent P n from Eq. (4).
Step 6. Set Dq ¼ P n, and solve the sensitivity problem

given by Eq. (5) for DT ðX; tÞ.
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Fig. 5. The measured and estimated temperature distributions of the drill
Step 7. Compute the search step size bn from Eq. (8).
Step 8. Compute the new estimation for qnþ1 from Eq. (3)

and return to Step 1.

6. Experimental setup

The Ti drilling experiment was conducted in a Mori
Seiki TV 30 computer numerical control vertical machin-
ing center. Fig. 2 shows the experimental setup with the
stationary drill and the Ti workpiece driven by spindle.
The drill was stationary because four thermocouples
embedded on the flank face could be routed through
coolant holes in the drill body to a data acquisition sys-
tem during drilling [13]. The drill and machine spindle
axes were aligned by a test indicator installed in the spin-
dle. The location of drill was adjusted in the horizontal
plane until the eccentricity was less than 10 lm. The tilt
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at (a) TC1, (b) TC2, (c) TC3 and (d) TC4 in the numerical test case.
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of the drill was adjusted so that two planes, which were
5 cm apart in height, still both had less than 10 lm
eccentricity. A Kistler 9272 dynamometer was placed
under the drill holder to measure the thrust force and
torque.

The workpiece was a 38 mm diameter grade two com-
mercially pure (CP) Ti bar. The drill was a 9.92 mm diam-
eter spiral point drill, Kennametal K285A03906, with
S-shaped chisel edge. Compared to a conventional twist
drill, the chisel edge had lower negative rake angle. There-
fore, the web could participate in cutting, not just indenting
the workpiece like the conventional twist drill. The spiral
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Fig. 6. The exact and estimated heat fluxes with (a) r = 2 �C and (b)
r = 5 �C in the numerical test case.
point drill geometry can reduce the thrust force and make
the drill self-centering [14].

Fig. 3 shows the spiral point drill and locations of four
thermocouples on the drill frank surface. An X TY T coordi-
nate with the X T-axis parallel to the tangential of the apex
of the curved cutting edge is defined. The tip of 0.127 mm
diameter type E thermocouples (OMEGA 5TC-TT-E-36-
72) was installed at the edge of hand-ground slots on the
drill flank face. Four thermocouples are denoted as TC1,
TC2, TC3 and TC4, and arranged at different locations
on the flank surface, as shown in Fig. 3. The X TY T coordi-
nate of four thermocouples are given as (�3.51 mm,
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Fig. 7. (a) The estimated applied heat fluxes using (1) TC1, TC2 and TC3,
and (2) TC1, TC3 and TC4 measurements, respectively; and (b) the
estimated temperature distributions of the drill at t = 19.2 s and 780 rpm
drilling speed.
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1.14 mm), (0.45 mm, 3.60 mm), (2.4 mm, �0.51 mm) and
(3.93 mm, �0.69 mm), respectively, and is also listed in
Fig. 3.

TC1 is located close to the cutting edge and away from
the drill center. TC2 is placed close to the flute and away
from the drill center. TC3 and TC4 are both near the cut-
ting edge with TC3 close to and TC4 away from the drill
center. Thermocouples were covered with cement (Omega
OB-400) to secure the position and prevent the contact
with workpiece.

Two drilling tests were conducted at two spindle speeds,
780 and 2350 rpm, which correspond to 24.4 and 73.2 m/
min drill peripheral cutting speeds, respectively. The feed
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Fig. 8. The measured and estimated temperatures at (a) TC1, (b) TC2 and
temperatures (using estimated heat flux) at TC4.
was fixed at 0.051 mm/rev or 0.025 mm for each tooth of
the two-flute drill. All experiments were conducted dry
without cutting fluid.

7. Results and discussion

The objective of this study is to show the validity of the
SDM in predicting the unknown time-dependent heat flux
along the drilling edges for a 3-D drilling tool with no prior
information on the functional form of the unknown quan-
tities. The physical model for this problem is described as
follows: All experiments were conducted dry without cut-
ting fluid, therefore h1 ¼ hw ¼ 30 W=ðm2 KÞ.
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7.1. Numerical experiments

To illustrate the ability of the SDM in predicting q(t)
with inverse analysis from the knowledge of the simulated
measured temperature distributions at the measured posi-
tions ðxm; ym; zmÞ, we consider the following numerical test
cases.

One of the advantages of using the SDM is that the ini-
tial guesses of the unknown heat fluxes q(t) can be chosen
arbitrarily. In all the test cases considered here, the initial
guesses for heat fluxes are taken as qðtÞ ¼ 0:0.

In order to compare the results for situations involving
random measurement errors, we assume normally distrib-
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Fig. 9. The measured and estimated temperatures at (a) TC1, (b) TC3 and
temperatures (using estimated heat flux) at TC2.
uted uncorrelated errors with zero mean and constant stan-
dard deviation. The simulated inexact measurement data
Y m can be expressed as

Y m ¼ Y m;exact þ xr ð18Þ

where Y m;exact is the solution of the direct problem with the
exact heat flux; r is the standard deviation of the measure-
ments; and x is a random variable that generated by sub-
routine DRNNOR of the IMSL [15], x is within �2.576
to 2.576 for a 99% confidence bound.

The geometry and grid system of the drilling tool for the
numerical test case are shown in Fig. 1. The number of grid
in X is taken as 9424. The total grid number on Sd plane is
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Fig. 10. (a) The estimated applied heat fluxes using (1) TC1, TC2 and
TC3, and (2) TC1, TC3 and TC4 measurements, respectively; and (b) the
estimated temperature distributions of the drill at t = 6.4 s and 2350 rpm
drilling speed.
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46. The temperature measurement locations are at the grid
points. The measurement time period Dt is 0.25 s and the
total measurement time tf is 15 s, i.e. there are 56 time
steps. Besides T1 = Tw = 25 �C are used.

The simulated exact function of the surface heat fluxes
on drilling surface Sd in this numerical experiment is given
as

qðSd ; tÞ ¼ 15000000þ 5000000� sin
2pt
15

� �
W=m2 on Sci;

0 6 t 6 15 s ð19Þ

A three-dimensional inverse problem is firstly examined
by using exact measurements, i.e. r ¼ 0:0. By setting stop-
ping criteria e ¼ 7:5, after 30 iterations the inverse solu-
tions converged. Due to the singularity of the gradient at
final time, the estimated values at last few time intervals
are discarded and therefore the average estimated heat flux
is shown just up to t ¼ 14 s. The exact and the estimated
heat fluxes and the estimated drill temperature distribu-
tions at t ¼ 14 s are shown in Fig. 4a and b, respectively.

The estimated heat flux is close to the exact values. The
relative error between exact and estimated heat flux is cal-
culated as ERRq = 2.32%, where ERRq is defined as

ERRq% ¼
X14

t¼1

qðtÞ � q̂ðtÞ
qðtÞ

����
����

" #,
14� 100% ð20Þ

here t represents the index of discreted time and q̂ðtÞ indi-
cates the estimated heat flux.

The measured and estimated temperature distributions
of the drill at TC1, TC2, TC3 and TC4 are shown in
Fig. 5. It can be seen that they are all in a good
agreement since the relative errors between them are calcu-
lated as ERRT1 = 0.0746%, ERRT2 = 0.0929%, ERRT3 =
0.0827% and ERRT4 = 0.0624%, respectively, where
ERRTm is defined as

ERRTm% ¼
X14

t¼1

T mðtÞ � Y mðtÞ
Y mðtÞ

����
����

" #,
14� 100%;

m ¼ 1 to 4 ð21Þ

here t represents the index of discreted time.
The inverse calculation is then proceeded to consider the

situation of inexact temperature measurements. The stan-
dard deviation of the measurement error is first taken as
r = 2 �C, then it is increased to r = 5 �C.

For r = 2 �C, 20 iterations are needed to satisfy the stop-
ping criterion based on the discrepancy principle, the exact
and estimated heat fluxes are shown in Fig. 6a. The rela-
tive errors for the heat fluxes and temperatures are calcu-
lated as ERRq = 3.39%, ERRT1 = 0.51%, ERRT2 =
0.514%, ERRT3 = 0.436% and ERRT4 = 0.431%, respec-
tively. For r = 5 �C, the number of iterations to satisfy
the stopping criterion is only 14, the exact and estimated
heat fluxes are shown in Fig. 6b, and the relative errors
for heat flux and temperatures are calculated as ERRq =
6.28%, ERRT1 = 1.08%, ERRT2 = 0.982%, ERRT3 =
1.07% and ERRT4 = 1.07%, respectively.

It can be learned based on the above numerical
results that the estimated heat fluxes are still reliable when
using four sensor measurements and considering error
measurements.

7.2. Experimental analysis

In order to show the practical applications for the pres-
ent inverse algorithm to the inverse drilling problem in esti-
mating the applied heat flux for a drill, the measured
temperature at four sensors as stated in Section 5 are uti-
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lized. Two cases are considered here: (1) temperatures
obtained at TC1, TC2 and TC3 are used as the measured
temperatures, while the temperatures measured at TC4 is
used as the purpose of verification; (2) temperatures
obtained at TC1, TC3 and TC4 are used as the measured
temperatures, while the temperatures measured at TC2 is
used as the checking temperature. Finally, the inverse solu-
tions obtained by the above two cases will be compared.

The ambient and water temperatures, T1 and T w, are
taken as the initial measured temperature of the drill at
TC1 for all the inverse calculations considered in the sec-
tion of experimental analysis. First, the estimated heat flux
q at the spindle speed 780 rpm, which correspond to
24.4 m/min drill peripheral cutting speed, based on the
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Fig. 11. The measured and estimated temperatures at (a) TC1, (b) TC2 and
temperatures (using estimated heat flux) at TC4.
temperature measurements at (TC1, TC2, TC3) and
(TC1, TC3, TC4), respectively, are shown in Fig. 7a. The
estimated drill temperature distributions at t ¼ 19:2 s is
reported in Fig. 7b. It can be learned from Fig. 7b that
the drilling edges always have the highest temperatures.

The measured and estimated temperatures at TC1, TC2
and TC3 are illustrated in Fig. 8a, b and c, respectively. It
can be seen from these three figures that they are in a good
agreement. The relative errors at TC1, TC2 and TC3 are
calculated as ERRT1 = 4.15%, ERRT2 = 2.55% and
ERRT3 = 4.52%, respectively.

In order to verify the accuracy of the present inverse
algorithm, the temperature at TC4 is calculated by using
the estimated heat flux. The comparison of the measured
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and calculated temperatures at TC4 is plotted in Fig. 8d.
The relative error is calculated as ERRT4 = 6.0344%.

The measured and estimated temperatures at TC1,
TC3 and TC4 are illustrated in Fig. 9a, b and c, respec-
tively. The comparison of the measured and calculated
temperatures at TC2 is plotted in Fig. 9d. The relative
errors at TC1, TC3, TC4 and TC2 are calculated as
ERRT1 = 1.453%, ERRT3 = 2.215%, ERRT4 = 2.078%
and ERRT2 = 7.192%, respectively. This implies that the
present estimated heat flux is indeed the actual drilling heat
flux since the residual between the checking and measuring
temperatures are always within the reliable range.
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Fig. 12. The measured and estimated temperatures at (a) TC1, (b) TC3 and
temperatures (using estimated heat flux) at TC2.
The estimated heat flux is increased in the beginning of
drilling, this may be due to the fact that the applied torque
is also increased in the beginning of drilling. The heat flux
is then decreased till the penetration of the titanium plate.
The total area of heat applying surface is calculated from
Fig. 1c as about 1.275 � 10�7 m2, the total applied heat
flux can be readily obtained by multiplying the estimated
q with that area.

Next, the estimated heat flux q at the spindle speed
2350 rpm, which correspond to 73.2 m/min drill peripheral
cutting speed, based on the temperature measurements at
(TC1, TC2, TC3) and (TC1, TC3, TC4) are shown in
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Fig. 10a. The estimated drill temperature distributions at
t ¼ 6:4 s is reported in Fig. 10b. Again, the highest drilling
temperature occurs along the drilling edges. The measured
and estimated temperatures at TC1, TC2 and TC3 are illus-
trated in Fig. 11a, b and c, respectively. The relative errors
at TC1, TC2 and TC3 are calculated as ERRT1 = 3.22%,
ERRT2 = 5.57% and ERRT3 = 2.33%, respectively.

The temperature at TC4 is calculated for the purpose of
verification by using the estimated heat flux. The compari-
son of the measured and calculated temperatures at TC4 is
plotted in Fig. 11d. The relative error is calculated as
ERRT4 = 5.29%.

The measured and estimated temperatures at TC1, TC3
and TC4 are illustrated in Fig. 12a, b and c, respectively.
The comparison of the measured and calculated tempera-
tures at TC2 is plotted in Fig. 12d. The relative errors
at TC1, TC3, TC4 and TC2 are calculated as ERRT1 =
1.68%, ERRT3 = 2.90%, ERRT4 = 3.21% and ERRT2 =
7.39%, respectively.

Again, due to the increasing of the applied torque, the
estimated heat flux is increased in the beginning of drilling.
Thereafter the heat flux is decreased till the penetration of
the working piece. The applied total can be obtained by
multiplying the estimated q with the heat applying area
1.275 � 10�7 m2.

It may be of interest to compare the applied heat flux
with time for low and high speed drilling. The rate of
increasing of the applied heat flux at low drilling speed is
very steep, after that the rate of decreasing of the applied
heat flux is also very steep, finally it decreases slowly until
the penetration of the plate. However, the rate of increas-
ing of the applied heat flux at high drilling speed is not that
steep like low drilling speed and the rate of decreasing of
the applied heat flux remains stable. This may be concluded
that the drilling thermal condition for high speed drilling is
better than that for low speed drilling since more stable
applied heat flux is experienced.

Finally it can be concluded from the above numerical
test cases and experimental analysis that the SDM is now
applied successfully in this 3-D inverse drilling problem
for predicting the time-dependent surface heat fluxes of
the drilling tools.
8. Conclusions

The SDM with adjoint equation was successfully
applied in a 3-D inverse heat conduction problem in deter-
mining the time-dependent applied heat flux of a tool in the
titanium drillings. The numerical test cases involving differ-
ent measurement errors were considered. The results show
that the SDM does not require a priori information for the
functional form of the unknown functions and the reliable
estimated values can always be obtained. Finally, the
experimental data are utilized to estimate the actual
applied heat flux on the drilling edge for the drilling tool.
It is found that in the beginning the applied heat flux is
increased with time due to the increasing of the torque,
then the applied heat flux is decreased till the penetration
of the workpiece.
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